

DATA MINING ASSOCIATION

PRESENTED BY

DR. NEHA SHARMA, INDIA

OBJECTIVE 1

To understand-

- Basic concepts and a road map
- Association Rules
- Market-Basket Model, Support & Confidence
- Apriori Algorithm
- Frequent-Pattern Tree Algorithm

What Is Frequent Pattern Analysis?

3 July 17, 2018

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- □ First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining in 1993
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Market Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

- Discloses an intrinsic and important property of data sets
- Forms the foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: associative classification
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Association rule mining

- □ Proposed by Agrawal et al in 1993.
- It is an important data mining model studied extensively by the database and data mining community.
- Assume all data are categorical.
- Not a good algorithm for numeric data.
- Initially used for Market Basket Analysis to find how items purchased by customers are related.

Market Basket Analysis

- Consider shopping cart filled with several items
- Market basket analysis tries to answer the following questions:
 - Who makes purchases?
 - What do customers buy together?
 - In what order do customers purchase items?

Market Basket Analysis

Given:

- A database of customer transactions
- Each transaction is a set of items

Example:Transaction with TID111 contains items{Pen, Ink, Milk, Juice}

TID	CID	Date	Item	Qty
111	201	5/1/99	Pen	2
111	201	5/1/99	Ink	1
111	201	5/1/99	Milk	3
111	201	5/1/99	Juice	6
112	105	6/3/99	Pen	1
112	105	6/3/99	Ink	1
112	105	6/3/99	Milk	1
113	106	6/5/99	Pen	1
113	106	6/5/99	Milk	1
114	201	7/1/99	Pen	2
114	201	7/1/99	Ink	2
114	201	7/1/99	Juice	4

The model: data

- $\square I = \{i_1, i_2, ..., i_m\}$: a set of items.
- \Box Transaction t:
 - $\blacksquare t$ a set of items, and $t \subseteq I$.
- □ Transaction Database T: a set of transactions $T = \{t_1, t_2, ..., t_n\}$.

Transaction data: supermarket data

Market basket transactions:

```
t1: {bread, cheese, milk}
t2: {apple, eggs, salt, yogurt}
...
tn: {biscuit, eggs, milk}
```

- Concepts:
 - An item: an item/article in a basket
 - ! the set of all items sold in the store
 - A transaction: items purchased in a basket; it may have TID (transaction ID)
 - A transactional dataset: A set of transactions

The model: rules

- \square A transaction t contains X, a set of items (itemset) in t, if $X \subseteq t$.
- □ An association rule is an implication of the form: $X \rightarrow Y$, where $X, Y \subset I$, and $X \cap Y = \emptyset$
- An itemset is a set of items.
 - \blacksquare E.g., $X = \{milk, bread, cereal\}$ is an itemset.
- \square A k-itemset is an itemset with k items.
 - E.g., {milk, bread, cereal} is a 3-itemset

Rule strength measures

□ Support: The rule holds with support sup in T (the transaction data set) if sup% of transactions contain $X \cup Y$.

- \square sup = $P(X \cup Y)$.
- □ Confidence: The rule holds in T with confidence conf if conf % of transactions that contain X also contain Y.
 - \square conf = $P(Y \mid X)$
- An association rule is a pattern that states when X occurs, Y occurs with certain probability.

Frequency / Support Count / Count

- Support count: Number of transactions in T that contains the itemset X.
- □ Denoted by X.count
- □ Assume T has n transactions.
- □ Then,

$$support = \frac{(X \cup Y).count}{n}$$

$$confidence = \frac{(X \cup Y).count}{X.count}$$

Rule strength measures

Lift: Another parameter to test the strength of the rule

$$Lift(x \to y) = \frac{Support(X \cup Y).count \times No.of \text{ Re } cords}{Support(X).count \times Support(Y).count}$$

There is no minimum Lift, it informs the correlation

Lift(
$$x \rightarrow y$$
) > 1 if x & y are positively correlated
 ≈ 1 if x & y are independent
< 1 if x & y are negatively correlated

13

Support, Confidence & Lift are used to filter the rule and sort the rule...

Goal and key features

□ Goal: Find all rules that satisfy the user-specified minimum support (minsup) and minimum confidence (minconf).

□ Key Features

- Completeness: find all rules.
- No target item(s) on the right-hand-side
- Mining with data on hard disk (not in memory)

An example

- Transaction data
- Assume:

minsup =
$$30\%$$

minconf = 80%

- Beef, Chicken, Milk t1:
- t2: Beef, Cheese
- Cheese, Boots t3:
- Beef, Chicken, Cheese t4:
- Beef, Chicken, Clothes, Cheese, Milk t5:
- Chicken, Clothes, Milk t6:
- Chicken, Milk, Clothes t7:
- □ An example frequent itemset:

{Chicken, Clothes, Milk}
$$[sup = 3/7]$$

$$[sup = 3/7]$$

Association rules from the itemset:

Clothes
$$\rightarrow$$
 Milk, Chicken

[sup =
$$3/7$$
, conf = $3/3$]

Clothes, Chicken
$$\rightarrow$$
 Milk,

[sup =
$$3/7$$
, conf = $3/3$]

An Example

16 July 17, 2018

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- □ Find all the rules $X \rightarrow Y$ with minimum support and confidence

Let
$$sup_{min} = 50\%$$
, $conf_{min} = 50\%$

Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}

Association rules:

$$A \to D (60\%, 100\%)$$

 $D \to A (60\%, 75\%)$

Many mining algorithms

- □ There are a large number of them!!
- They use different strategies and data structures.
- Their resulting sets of rules are all the same.
 - Given a transaction data set *T*, and a minimum support and a minimum confident, the set of association rules existing in *T* is uniquely determined.
- Any algorithm should find the same set of rules although their computational efficiencies and memory requirements may be different.

18 July 17, 2018

Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)

- □ Probably the best known algorithm
- ☐ Two steps:
 - Find all itemsets that have minimum support (*frequent itemsets*, also called large itemsets).
 - Use frequent itemsets to generate rules.

July 1/

- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

July 1/, 20 2018 Database TDB [temset Itemset sup L_1 {A} {A} 2 {B} {B} 3 1st scan 10 A, C, D 3 {C} {C} 3 20 B, C, E {D} {E} 3 30 A, B, C, E {E} 3 40 B, E **Itemset** {A, B} {A, B} 2nd scan sup {A, C} 2 {A, C} {A, C} 2 {A, E} {A, E} 2 {B, C} {B, C} {B, C} 3 {B, E} 3 {B, E} {B, E} {C, E} {C, E} {C, E} 2 3rd scan C_3 Itemset Sup_{min} L_3 {B, C, E} 2

The Apriori Algorithm

Pseudo-code: C_k : Candidate itemset of size k L_{ν} : frequent itemset of size k $L_1 = \{\text{frequent items}\};$ for $(k = 1; L_k != \emptyset; k++)$ do begin $C_{k+1} = \text{candidates generated from } L_k$; for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t L_{k+1} = candidates in C_{k+1} with min_support end return $\bigcup_k L_k$;

July 1/,

- How to generate candidates?
 - \blacksquare Step 1: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - \square $L_3 = \{abc, abd, acd, ace, bcd\}$
 - Self-joining: L_3*L_3
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - \blacksquare acde is removed because ade is not in L_3
 - C₄={abcd}

Frequent Itemset = { B, C, E}

Possible Association Rules:

Rule	Support	Confidence	Confidence %	Lift
$B \rightarrow \{C, E\}$	0.5 = 50%	0.66	66%	1.33
$C \rightarrow \{B, E\}$	0.5 = 50%	0.66	66%	0.88
$E \rightarrow \{C, B\}$	0.5 = 50%	0.66	66%	1.33
$\{B,C\} \rightarrow E$	0.5 = 50%	1	100%	1.33
$\{C, E\} \rightarrow B$	0.5 = 50%	1	100%	1.33
$\{B, E\} \rightarrow C$	0.5 = 50%	0.66	66%	0.88

If the Minimum Confidence is 70%, then only 4th and 5th rules are the output.

July 1/,

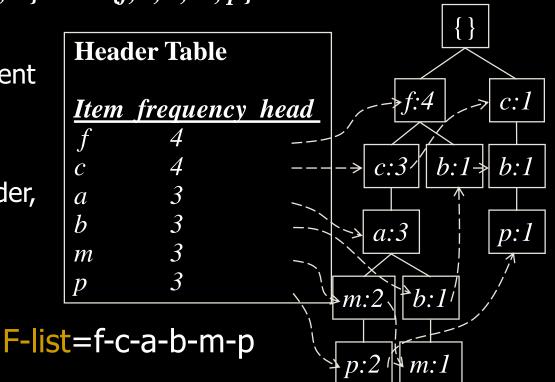
- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Construct FP-tree from a Transaction Database

25 July 17, 2018

<i>TID</i>	Items bought	(ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	• 4 2
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	min_support = 3
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$	

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree



July 1/,

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count nodelinks and the count field)
 - For Connect-4 DB, compression ratio could be over 100

July 1/,

- Mining multilevel association
- Mining multidimensional association
- Mining quantitative association
- Mining interesting correlation patterns

Thank you

QUESTIONS????