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2 OBJECTIVE

To understand-

• Basic concepts and a road map

• Association Rules

• Market-Basket Model, Support & Confidence

• Apriori Algorithm

• Frequent-Pattern Tree Algorithm
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What Is Frequent Pattern Analysis?

 Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that 

occurs frequently in a data set 

 First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of 

frequent itemsets and association rule mining in 1993

 Motivation: Finding inherent regularities in data

 What products were often purchased together?— Beer and diapers?!

 What are the subsequent purchases after buying a PC?

 What kinds of DNA are sensitive to this new drug?

 Can we automatically classify web documents?  

 Applications

 Market Basket data analysis, cross-marketing, catalog design, sale campaign 

analysis, Web log (click stream) analysis, and DNA sequence analysis.
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Why Is Freq. Pattern Mining Important?

 Discloses an intrinsic and important property of data sets

 Forms the foundation for many essential data mining tasks

 Association, correlation, and causality analysis

 Sequential, structural (e.g., sub-graph) patterns

 Pattern analysis in spatiotemporal, multimedia, time-series, and 

stream data 

 Classification: associative classification

 Cluster analysis: frequent pattern-based clustering

 Data warehousing: iceberg cube and cube-gradient 

 Semantic data compression: fascicles

 Broad applications
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Association rule mining

 Proposed by Agrawal et al in 1993. 

 It is an important data mining model studied 

extensively by the database and data mining 

community. 

 Assume all data are categorical.

 Not a good algorithm for numeric data.

 Initially used for Market Basket Analysis to find 

how items purchased by customers are related.

Bread  Milk [sup = 5%, conf = 100%]



Market Basket Analysis

 Consider shopping cart filled with several items

 Market basket analysis tries to answer the following 

questions:

 Who makes purchases?

 What do customers buy together?

 In what order do customers purchase items?
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Market Basket Analysis

Given:

 A database of 
customer transactions

 Each transaction is a 
set of items

 Example:
Transaction with TID 
111 contains items 
{Pen, Ink, Milk, Juice}

TID CID Date Item Qty 

111 201 5/1/99 Pen 2 

111 201 5/1/99 Ink 1 

111 201 5/1/99 Milk 3 

111 201 5/1/99 Juice 6 

112 105 6/3/99 Pen 1 

112 105 6/3/99 Ink 1 

112 105 6/3/99 Milk 1 

113 106 6/5/99 Pen 1 

113 106 6/5/99 Milk 1 

114 201 7/1/99 Pen 2 

114 201 7/1/99 Ink 2 

114 201 7/1/99 Juice 4 
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The model: data

 I = {i1, i2, …, im}: a set of items.

 Transaction t : 

 t a set of items, and t  I.

 Transaction Database T: a set of transactions T = {t1, 

t2, …, tn}.
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Transaction data: supermarket data

 Market basket transactions:

t1: {bread, cheese, milk}

t2: {apple, eggs, salt, yogurt}

… …

tn: {biscuit, eggs, milk}

 Concepts:

 An item:  an item/article in a basket

 I: the set of all items sold in the store

 A transaction: items purchased in a basket; it may have 
TID (transaction ID)

 A transactional dataset: A set of transactions
9



The model: rules

 A transaction t contains X, a set of items (itemset) in I, 
if X  t.

 An association rule is an implication of the form:

X  Y, where X, Y  I, and X Y = 

 An itemset is a set of items.

 E.g., X = {milk, bread, cereal} is an itemset.

 A k-itemset is an itemset with k items.

 E.g., {milk, bread, cereal} is a 3-itemset
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Rule strength measures

 Support: The rule holds with support sup in T (the 
transaction data set) if sup% of transactions contain 
X  Y. 

 sup = P(X  Y).

 Confidence: The rule holds in T with confidence conf 
if conf % of transactions that contain X also contain 
Y.

 conf = P(Y | X)

 An association rule is a pattern that states when X
occurs, Y occurs with certain probability. 



Frequency / Support Count / Count

 Support count: Number of transactions in T that 

contains the itemset X.  

 Denoted by X.count

 Assume T has n transactions. 

 Then, 

n

countYX
support

).  ( 


countX

countYX
confidence

.
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
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Rule strength measures

 Lift: Another parameter to test the strength of the rule

 There is no minimum Lift, it informs the correlation

Lift(xy) > 1 if x & y are positively correlated

≈ 1 if x & y are independent

< 1 if x & y are negatively correlated

Support, Confidence & Lift are used to filter the rule and 

sort the rule… 

countYSupportcountXSupport
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Goal and key features

 Goal: Find all rules that satisfy the user-specified 

minimum support (minsup) and minimum confidence 

(minconf).

 Key Features

 Completeness: find all rules.

 No target item(s) on the right-hand-side

 Mining with data on hard disk (not in memory)
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An example

 Transaction data

 Assume:
minsup = 30%

minconf = 80%

 An example frequent itemset:

{Chicken, Clothes, Milk}    [sup = 3/7]

 Association rules from the itemset:

Clothes  Milk, Chicken [sup = 3/7, conf = 3/3]

… …

Clothes, Chicken  Milk, [sup = 3/7, conf = 3/3]

t1: Beef, Chicken, Milk
t2: Beef, Cheese
t3: Cheese, Boots
t4: Beef, Chicken, Cheese
t5: Beef, Chicken, Clothes, Cheese, Milk
t6: Chicken, Clothes, Milk
t7: Chicken, Milk, Clothes
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An Example

 Itemset X = {x1, …, xk}

 Find all the rules X  Y with 

minimum support and confidence

Let  supmin = 50%,  confmin = 50%

Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}

Association rules:

A  D  (60%, 100%)

D  A  (60%, 75%)

Transaction-id Items bought

10 A, B, D

20 A, C, D

30 A, D, E

40 B, E, F

50 B, C, D, E, F
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Many mining algorithms

 There are a large number of them!!

 They use different strategies and data structures. 

 Their resulting sets of rules are all the same. 

 Given a transaction data set T, and a minimum support and a 

minimum confident, the set of association rules existing in T is 

uniquely determined.

 Any algorithm should find the same set of rules although 

their computational efficiencies and memory requirements 

may be different. 
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Apriori: A Candidate Generation-and-Test Approach

 Apriori pruning principle: If there is any itemset which is infrequent, 

its superset should not be generated/tested! (Agrawal & Srikant 

@VLDB’94, Mannila, et al. @ KDD’ 94)

 Probably the best known algorithm

 Two steps:

 Find all itemsets that have minimum support (frequent 

itemsets, also called large itemsets).

 Use frequent itemsets to generate rules. 
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Apriori: A Candidate Generation-and-Test Approach

 Method: 

 Initially, scan DB once to get frequent 1-itemset

 Generate length (k+1) candidate itemsets from length k 

frequent itemsets

 Test the candidates against DB

 Terminate when no frequent or candidate set can be generated
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The Apriori Algorithm—An Example 

Database TDB

1st scan

C1 L1

L2

C2

C2

2nd scan

C3 L3
3rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2
Supmin = 2
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The Apriori Algorithm

 Pseudo-code:

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk   ;

for each transaction t in database do

increment the count of all candidates in Ck+1

that are contained in t

Lk+1 = candidates in Ck+1 with min_support

end

return k Lk  ;
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Important Details of Apriori

 How to generate candidates?

 Step 1: self-joining Lk

 Step 2: pruning

 How to count supports of candidates?

 Example of Candidate-generation

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3*L3

 abcd from abc and abd

 acde from acd and ace

 Pruning:

 acde is removed because ade is not in L3

 C4={abcd}
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Generating Association Rules from Frequent Itemsets

Frequent Itemset = { B, C, E}

Possible Association Rules:

If the Minimum Confidence is 70%, then only 4th

and 5th rules are the output.

Rule Support Confidence Confidence % Lift

B  {C, E} 0.5 = 50% 0.66 66% 1.33

C  {B, E} 0.5 = 50% 0.66 66% 0.88

E  {C, B} 0.5 = 50% 0.66 66% 1.33

{B, C}  E 0.5 = 50% 1 100% 1.33

{C, E}  B 0.5 = 50% 1 100% 1.33

{B, E}  C 0.5 = 50% 0.66 66% 0.88
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Challenges of Frequent Pattern Mining

 Challenges

 Multiple scans of transaction database

 Huge number of candidates

 Tedious workload of support counting for candidates

 Improving Apriori: general ideas

 Reduce passes of transaction database scans

 Shrink number of candidates

 Facilitate support counting of candidates
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Construct FP-tree from a Transaction Database

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find frequent 
1-itemset (single item 
pattern)

2. Sort frequent items in 
frequency descending order, 
f-list

3. Scan DB again, construct 
FP-tree

F-list=f-c-a-b-m-p
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Benefits of the FP-tree Structure

 Completeness 

 Preserve complete information for frequent pattern mining

 Never break a long pattern of any transaction

 Compactness

 Reduce irrelevant info—infrequent items are gone

 Items in frequency descending order: the more frequently 

occurring, the more likely to be shared

 Never be larger than the original database (not count node-

links and the count field)

 For Connect-4 DB, compression ratio could be over 100
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Mining Various Kinds of Association Rules

 Mining multilevel association

 Mining multidimensional association

 Mining quantitative association 

 Mining interesting correlation patterns
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QUESTIONS????


