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Data in Data Science: Big Data

Unstructured data will account
for more than 80% of the data
collected by organizations

Total Data Stored




v IBM's Definition — Big Data Characteristics
http: //www-01.ibm.com/software/data/bigdata/
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Need For Data Science

6:0 Decision makin
Q Unstructured Data % 5

Revolution

of Q Data Storage
Technology Q Shadicatia Data Science

@ Lack of predictiive
mm/ analytics

Q Pattern discovery
Lack of scientific
insights




Need For Data Science
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DATA SCIENCE

WHY ARE THERE 50 MANY BUSINESS
AND DATA SCIENCE BUZZWORDS?
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Business dictionary

- Data
- Data team

- Big data team

- Business intelligence
- Data science

- Business analytics

- Data analytics
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Quantitative analytics
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Introduction to Business
Analytics, Data Analytics and
Data Science
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Qualitative Business
Analytics  Analytics

Business Case
Studies
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Data Report

Reporting with
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Data Mining is a discipline reliant on data availability,

while business analytics does not completely rely on data

Past Present Future
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mostly the part that uses complex mathematical,

statistical and programming tools
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Data Mining can be used to improve the accuracy of predictions based on data
extracted from various activities typical for drilling efficiency
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Adding Business Intelligence (Bl),
Machine Learning (ML) and
Artificial Intelligence (Al)
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business intelligence (BI): the process of analysing and
reporting historical business data

aims to explain past events using business data

Bl Dashboard
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Business intelligence is the preliminary step of predictive analytics

1. analyse past data and extract useful insights

2. create appropriate models
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machine |earning: The ability of machines to predict outcomes
without being explicitly programmed

w ML is about creating and implementing algorithms
e o that let machines receive data and use this data to:

)

f 4 o make predictions
L o analyse patterns
o give recommendations
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applying machine learning tools to

the context of business intelligence

Future




artificial intelligence: simulating human knouledge and
decision making with computers

We, as humans, have only managed to reach Al through machine learning
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Today though, ML is the only form of general Al that is being applied
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advanced analytics: a marketing term...
and Data Science
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What is the difference between Data Science, Data Analysis, Big Data, Data Analytics, Data Mining and Machine Leaming?
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There can be two possible scenarios
where You have to use Data Science
to Predict










Data and Data Science




WHEN

it is applied

WHY

you need it
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TRADITIONAL

Py Data Science

BUSINESs = TRADITIONAL MACHINE
INTELLIGENCE |  METHODS LEARNING

PREPROCESS

lass labeling
number, text,
digital images,
digital video data,
digital audio data)

data cleansing

FUTURE o ))

T —

PAST  NOW

Predictive Analytics
utilize artificial

intelligence to
predict behavior in
unprecedented ways

assess potential

future scenarios
by using advanced
statistical methods

REGRESSION SUPERVISED

LEARNING

® SVMs

® NNs

® deep learning

¢ random forests

® bayesian networks
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Traditional data

ID | Name | Age
o structured 001 | John | 35

002 | Alan 22

--------------------------------

can be managed

i from 1 computer




Big data

the11 VS of big data

VISION
value
visualisation

variability




Big data
Velocity:
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O retrieved in real-time
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Data Science
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2 Data Science
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Machine learning

predict outcomes from data without
being explicitly programmed to

Algorithm:

—> J[x-y| + statisties —> |

predictions with
99999999 unprecedented accuracy




o class labeling
(number, text,
digital images,
digital video data,
digital audio data)

e data cleansing

» dealing with

i YR ol
BUSINESS
INTELLIGENCE

utilize artificial
intelligence to
predict behavior in
unprecedented ways

LEARNING

* SVMs

* NNs

® deep learning

® random forests

® bayesian networks




What is Data Science?

» Data Science i1s a blend of various tools,

algorithms, and machine learning principles with

the goal to discover hidden patterns from the raw

» Data Science Is primarily used to make decisions

and predictions




What is Data Science?

COMPUTER
SCIENCE




Data Analysis Vs Data Science

Business :
Features . Data Science
Intelligence

Structured Both Structured and Unstructured

Data Sources (Usually SQL, often  (|ogs, cloud data, SQL, NoSQL, text,
Data Warehouse) Tweeter Feed)

Statistics, Machine Learning, Graph
Analysis, Neuro- linguistic
Programming (NLP)
Focus Past and Present Present and Future

Pentaho, Microsoft

RapidMi BigML, Weka, R
Tools B, OlikView, R apidMiner, BigML, Weka,

Statistics and

el Visualization




Application of Data Science

Recommend the right product to right
customer to enhance business

Predict the characteristics of high LTV
customers and helps in customer
entation

Build Intelligence and ability in Machines

Predict fraudulent transaction beforehand

Perform sentiment analysis to predict the
outcome of elections




Dynamic pricing

Predicting flight delay

Disease prediction
0] Medication

Upselling

Cross selling t
Predicting lifetime valueof customer @
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Communicate Data
Results Preparation

. Life Cycle of ‘
E Data Science

Operationalize Model

Building

Planning

-’




Phase 1—Discovery

| 101
01010

®» Understand - Specifications, Requirements, Priorities and
Required Budget.

Must possess the ability to ask the right questions.

®» Assess the availability of required resources present in terms
of people, technology, time and data to support the project.

®» Frame the business problem and formulate initial hypotheses
(IH) to test.




Preparing the
analytics Sandbox
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Phase 2—Data Preparation
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Data Conditioning
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Survey & Visualize
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Phase 3 — Model Planning

®» Determine the methods and techniques to draw the
relationships between variables.

®» These relationships will set the base for the algorithms which will be
Implemented in the next phase.

Exploratory Data Analytics (EDA) using various statistical formulas
and visualization tools.

29k SAS/

ACCESS

Analysis
Services




Phase 4 — Model Building

®» Develop datasets for training and testing purposes.

= Consider whether the existing tools will suffice for running the models or it
will need a more robust environment (like fast & parallel processing).

®» Analyze various learning techniques like classification, association and
clustering to build the model.

~ Common Tools For Model Building

SAS WEKA SPCS Matlab Alpine Statistica

Enterprise Modeler Miner
Miner



L
Phase 5 — Operationalize n

®» Deliver final reports, briefings, code and technical documents.

®» Pi|ot project is also implemented in a real-time production environment
to provide the clear picture of the performance and other related
constraints on a small scale before full deployment

Phase 6 — Communicate Results

» Fvaluate if planned goals have been achieved.

So, in the last phase, identify all the key findings, communicate to the
stakeholders and determine if the results of the project are a success
or a failure based on the criteria developed in Phase 1.






Case Study: Diabetes Prevention
» Step 1: Data Discovery

;npreg;glu;bp;skin;bmi;ped;age,income
1;6;148;72;35;33.6;0.627:50
2;1;85;60;29;26.6;0.351;31
3;1;89;80;23;28.1;0.167;21
4;3;78;50;32;31;0.248;26 Attributes:
| =] Q2
2iei 7 %3050, 198 npreg - Number of times pregnant

6;5:;1660;72;19;25.8;0.587:51

7;0;118;84;47;45.8;0.551;31 glucose - Plasma glucose concentration
8:1;103;30;38;43.3;0.183;33 bp _ BIOOd pressure

9:3;126;88;41;39.3;0.704;27
10;9;119;80;35;29;0.263;29 skin - Triceps skinfold thickness
12;5:109;75;26;36;0.545;60 bmi - Body mass index
13;3;88;58;11;24.8;0.267;22 ped - Diabetes pedigree function
14;10;122;78;31;27.6;0.512;45

154‘;!'-’nﬁ23.»14ﬁ':mn33 | age B Age

16;9;102;76;37;32.9;0.665;46 Income - Income

17;2;90;68;42;38.2;0.503;27

18;4;111;72;47;37.1;1.239;56

19:3:180:64:25;34:0.271;26

30:7;106;92;18;39;0.235;48

21;9;171;110;24;45.4;0.721;54

11:1:97:66;15:23.2;0.487:22




Case Study: Diabetes Prevention
®» Step 2: Data Preparation

npreg  glu bp skin bmi ped age income
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Diabetes Prevent

Data Preparation

Case Study
=» Step 2:




Case Study: Diabetes Prevention
= Step 3: Model Planning

ool 2




Case Study: Diabetes Prevention
» Step 4: Model Building




Phase 5 — Operationalize E

= Run a small pilot project to check if our results are appropriate. Look for
performance constraints if any.

= |f the results are not accurate, then we need to replan and rebuild the
model.

Phase 6 — Communicate Results

Share the output for full deployment.



Few More Use Cases

» Basketball teams are using data for tracking team
strategies and outcome of matches.

» Below parameters will be used for model building.
* Average pass time of ball.
* Number of successful passes.
+ Speed and accuracy of successful baskets.

-

* Area of court the player on average is SpOrTS AHO |yt|CS

shadowing.

and Data Science

» Models built on the basis of data science algorithms
help in pattern discovery of player game,

Winning the Game with
Methods and Models




Few More Use Cases

» Amazon has huge amount of consumer purchasing
data.

» The data consists of consumer demographics (age,

sex, location), purchasing history, past browsing
history,

» Based on this data, Amazon segments its
customers, draws a pattern and recommends the
right product to the right customer at the right
time,




Few More Use Cases

»Google self driving car is a smart, driverless car.

» It collects data from environment through

Sensors.

» Takes decisions like when to speed up, when to

speed down, when to overtake and when to turn.




Role of Data Scientist

The Data Scientist will be responsible for designing and creating processes and layouts for complex, large-

scale data sets used for modeling, data mining, and research purposes.

Responsibilities

» Selecting features, building and optimizing classifiers using machine learning techniques.
» Data mining using state-of-the-art methods.

» Extending company's data with third party sources of information when needed.

» Processing, cleansing, and verifying the integrity of data for analysis.

» Building predictive models using Machine Learning algorithms.




The Data Scientist coding toolbox
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\ 54% 45% 36% 19% 18% 8%



https://365datascience.com/

Certifications and accomplishments

43%

CERTIICATE ) With at least one )
online course in J|
thier resume

Certificates
on average


https://365datascience.com/

Highest level of education received

Bachelor

PhD

4L46% VE G

*Some participants did not share this inforrmation (= 3%)



Area of academic studies

Economics and
social sciences

Engineering

Statistics and
mathematics

Computer
science

Natural sciences

[ By i & T wmrmsatry Boabasayy |

Data science
and analysis



Industries hiring Data Scientists

Technology/IT Industrial Financial Healthcare

D) ) $ 4

43% 39% 16% 2%




Country of employment and industry

-

Technology/IT Financial Healthcare Industrial




Think Big, Start Small, Scale Fast and
Innovate in the era of disruption

THANKYOU

®»Dr. Neha Sharma

»\www.drnehasharma.in
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®» 0923602490
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